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PROOFS IN NUMBER THEORY: HISTORY AND HERESY

Tim Rowland
University of Cambridge

My purpose in writing this paper is. to advocate the use of particular-but-generic proof
strategies in undergraduate classrooms and in textbooks, in order to convince students of

the truth of number-theoretic theorems and student-generated conjectures. The domain of

number theory lends itself particularly well to generic argument, presented with the

intention of conveying the force and the structure of a conventional generalised argument:

through the medium of a particular case. The potential of the generic example as a didactic

tool is virtually unrecognised. Although the use of such examples has good historical

provenance, the suggestion that they might be an alternative to formal proof tends to be

viewed as a kind of heresy from the perspective of modern proof practice.

Procedures and proofs
The use of examples' to point to abstract concepts and to general procedures is
commonplace pedagogical practice (see e.g. Mason’s paper for this research forum). In the
field of number theory, a case in point might be explication of the Euclidean algorithm for
the greatest common divisor of two natural numbers. Beginning with, say, 194 and 40 the
demonstration proceeds:

194 = 4x40+ 34

40 = 1x34+ 6
34 = S5x6 + 4
6 = 1x4 + 2
4 = 2x2+ 0

In order to apply the procedure to another pair of natural numbers, the student needs to
become aware of the status of each number in each row of the procedure, and how each
row relates to the next. That is, not only to agree that each line is a true statement, but to
appreciate how it has been initiated and structured. As teacher, I might assist this by (say)
underlining the quotients 4, 1, 5, 1, 2 in red. I might draw diagonal lines joining the divisor
and remainder in each line to the dividend and divisor, respectively, in the next e.g.
joining the two 40s, the two 34s, and so on. (It is relevant to pause to reflect on how you
made sense of the previous sentence: perhaps the example was more illuminating than the
somewhat archaic expression of the general procedure that preceded it.) The choice of
example (194, 40) was made in recognition of its merits in its own right and relative to
some alternatives. I judge it to be preferable to (194, 48), which is a poor paradigm
because, for that pair, the algorithm terminates too soon. I would also avoid (144, 89) for a
different reason: -although it has good ‘length’, it conveys difference rather than division.
Try it, if the intention of that remark is not self-evident. I would resist (97,20) in
recognition of my own liking for coprime pairs despite their particularity. :

Much less common is the use of examples to explain why general relationships might
hold: in short, to prove. One reason why this might be the case is clear enough—because
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one or more examples cannot prove a statement about an infinite category of cases. Yet
there is a sense in which the presentation of a single example can speak for some general
truth, and for some general argument above and beyond the particularities of the example
itself. Such examples, suitably structured to be not just a confirming instance but a chain
of reasoning, are known as generic examples. As Balacheff (1988) so clearly and elegantly
puts it:

The generic example involves making explicit the reasons for the truth of an assertion by

means of operations or transformations on an object that is not there in its own right, but as

a characteristic representative of the class. (BalachefT, 1988, p. 219) :

The generic example serves not only to present a confirming instance of a proposition -
which it certainly is - but to provide insight as to why the proposition holds true for that
single instance. The transparent presentation of the example is such that analogy with
other instances is readily achieved, and their truth is thereby made manifest. Ultimately
the audience can conceive of no possible instance in which the analogy could not be
achieved.
Un peu d'histoire o
The story (probably apocryphal, but see Polya, 1962, pp. 60-62 for one version) is told
about the child C. F. Gauss, who astounded his- village schoolmaster by his rapid
calculation of the sum of the integers from 1 to 100. Whilst the other pupils performed.
laborious column addition, Gauss added 1 to 100, 2 to 99, 3 to 98, and so on, and finally
computed fifty 101s with ease. The power of the story is that it offers the listener a means
to add, say, the integers from 1 to 200. Gauss’s method demonstrates, by generic example,
that the sum of the first 2k positive integers is 4(2k+1). Nobody who could follow Gauss’
method in the case k=50 could possibly doubt the general case. It is important to
emphasise that it is not simply the fact that the proposition 1+2+3+ ... + 2k = k(2k+1) has
been verified as true in the case k=50. It is the manner in which it is verified, the form of
presentation of the confirmation. :
Paul Hoffman recounts the story in his best-seller The Man Who Loved Only Numbers
(Hoffman, 1998). His comment on it {(quoting mathematician Ronald Graham) is a telling
testimony to the genericity of Gauss’ method.

What makes Gauss’ method so special .... Is that it doesn’t just work for this specific

problem but can be generalised to find the sum of the first 50 integers or the first 1,000
" integers ... or whatever you want. (p. 208)
In introducing the notion ‘generic example’ to audiences of all kinds - undergraduate and.
graduate students, mathematics education conference-goers, ‘general audiences’ - I’
routinely choose Gauss’ method as a paradigm of the genre. We should not be surprised
‘that Gauss, of all people, should have provided it. Ironically, his Disquisitiones
Arithmeticae established the ‘modern’ standard for generality in number theoretic proof
arguments. ‘ )
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By contrast, Pierre de Fermat (1601-65) was notorious for stating number theoretic results
in the absence of formal proof. In particular, it was Euler who gave a general proof of the
‘Little’ Theorem (if p is prime and a, an integer, p divides @’-a) some decades after Fermat
stated it. In a recent article, Bum (2002) offers some suggestions conceming the kinds of

- reasoning that Fermat himself might have used.to establish the truth of some claims
associated with his Little Theorem, made in a letter to Mersenne in 1640. These claims
were developed in the course of Fermat’s search for perfect numbers. A natural number
(such as 6 or 28) is said to be perfect if it is equal to the sum of its divisors including 1, but
not itself. Around 300BC, Euclid had established that the set of perfect numbers can be.
identified with integers of the form 2"/(2" - 1) where 2" — 1 is prime. In his letter to
Mersenne (after whom such primes are named), Fermat claimed that if  is composite then
2" — 1 is not prime. The proof amounts to the observation that 2° — 1 divides 2 — 1. The
converse, however, is false: in 1536, Hudalrichus Regius had shown that although 11 is -
prime, 2'' — 1 is composite, and so 2'%2"" - 1) is not a perfect number.

Fermat made a claim which was to transform the previously Herculean task of
determining whether or not 2° — | is prime for a given prime p. In effect, Fermat claimed
that if an integer of this form has a prime factor, then that factor is of the form 2kp + 1 (the
factor 1 is covered by =0, and it follows from Fermat’s Little Theorem that 2° — 1 itself is
of the form 2kp + 1). Thus, to decide whether a proper factor of 2!! — 1 exists, we only
need to consider 23, since this is the only. prime of the form 22k + 1 with square less than
2"~ 1. In fact, 2" — 1 =23x89. (Note that 89 is also of the form 22k + 1, as expected). '

- In his letter, Fermat exemplifies this statement about prime factors of 2° — 1 with reference
to this case i.e. when p = 11. Bum (ibid.) reconstructs the argument that Fermat might
have given with reference to this particular-but-generic case. Burn then continues: “Now
we generalise the generic example of factorising 2'! — | by expressing the argument
algebraically”. Of course, this accords with good modern practice, althiough Burn does not
suggest that Fermat, having established the generic, then required the general formulation
to be convinced of the general case.

Teaching and learning Wilson's theorem
The obscure Cambridge mathematician John Wilson is remembered to this day on account
of a theorem stated in 1770, a century after Fermat's demise:

p is prime if and only if (p-1)! =-1 (mod p)

To be precise, it was Edward Waring, Isaac Newton’s successor (and Stephen Hawking’s
predecessor) as the’ Cambridge Lucasian Professor of Mathematics, who stated the result
of his former student, Wilson. In the best traditions of the time, neither Wilson nor Waring
managed to prove the theorem: its status seems to have been a conjecture, the outcome of
inductive reasoning from examples. It fell to Lagrange to give the first proof of Wilson’s
theorem, in 1773. How then, might we approach the genesis of the theorem and the
construction of its proof with the hindsight and didactic insights of the twenty-first
century? What might a generic proof of that theorem look like?
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As a preliminary, we would need to know. that 1 are the only self-inverse elements under
multiplication modulo p. Now consider the prime number 13 (17 or 19 would do equally
well) and list the reduced set of residues modulo 13: .

1 2 -3 4 5 6 71 8 9 10 1 12

Pair each of the numbers from 2 to 11 with its (distinct) multiplicative inverse mod 13:
2,7, (3,9),(4,10), (5, 8), (6, 11). 1 and 12, of course, are self-inverse. [I usually link the
elements in the inverse-pairs with lines on a chalk board]. Clearly, the product of these
integers from 2 to 11 must be congruent to 1% i.e. 1, modulo 13. Therefore 12! = 1x1x12
(=12) mod 13. The argument is generic, since 13 was in no way an untypical choice: the
pairing would work equally well with any prime. .

The scene now shifts to a session with class of about 20 first-year undergraduate joint

honours mathematics-with-education students. I could have stated Wilson’s theorem and

proved it formally in five minutes. In fact, it took an hour to make some conjectures and to
" work on proof. .This is what happened.

First, I asked them to evaluate 4! mod 5, 6! mod 7, 10! mod 11, and to write downa
conjecture. The most common version of the conjecture was n! = n mod (n+1). The *‘for all
n’ seemed to be implicit. I asked them to evaluate 5! mod 6. They did, and they were
visibly surprised by the refutation. I asked whether they. could modify the conjecture. At
first they homed in on the even/odd distinction between moduli; but #=8 led to further
refutation and eventual restriction to prime values of n+l. n=12 provided a further
confirming instance. I proceeded to an interactive presentation of a generic proof, inviting
Sonia to pick a prime between 11 and 19. She chose 19. I got them to list 1 to 18 and work
on inverse pairs in table-groups, during which Simon spontaneously explained to his
colleagues why 18! had to be 18 mod 19. I asked him to repeat his reasoning to the class,
and wrote his explanation on the whiteboard. He picked out eight inverse pairs, and
explained why the product of the integers from 2 to 17 inclusive would have to be 1 mod
19: They dutifully copied Simon’s argument. Later, 1 enquired what wouid have happened
if we had looked at 28! mod 29, and Abby explained why it would have to be 28, again
referring to inverse pairings of the integers from 2 to 27, although without feeling the need
to .identify the pairs this time. “Does everyone agree?”, I asked. They agreed. One
shouldn’t read too much into such consent, however pleasing; nevertheless, Abby, at least,
had convinced me that she had appropriated the proof-scheme.

The next day, at a tutorial meeting, I asked five members of the class to write it out the
proof (that, for primes p, p!=p-1 mod p) in conventional generality. Their responses were
unaided and individual. It should be borne in mind, as I indicated earlier in this paper, that
these students will have had little experience of composing formal proofs. Nevertheless,
they all indicated in their writing that the genericity of the case p=19 - had been apparent to
them. Moreover, their argumentation and use of notation would have satisfied any
‘examiner. Hannah’s response, which was typical, was as follows.

E-)(E-2)P-3)p-4) ... 2x1
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Every element of M,,' has an inverse, because M, is a group.

We know (from work on primitivé roots) that only p-1 has order 2. Therefore p-1 is self-
inverse. All other members of M, apart from 1 must have a distinct inverse.

Each inverse pair when multiplied gives 1 mod p.
This gives (p-1)(1'**)1 = (p-1)! mod p
‘Therefore (p-1)! = (p-1) mod p o
Only Zo& gave evidence of some insecurity in this intangible world that lies beyond

examples. Her proof was much the same as Hannah’s, but began with identification of the
inverse pairs in the case p=11 (transfer to other examples) and concluded the comment:

I tried to find a formula for the inverses, for example p-2 has inverse p-6 (but only for
p=11). I have been unable to do this.

For Zo&; mere knowledge of the existence of distinct inverses in the range 2 to p—2 is not
enough. What is not clear is whether it leaves her cognitively insecure, or whether she
believes that I (in my role as assessor) will expect more.

Abby’s proof was elegantly and lucidly expressed, but stated that there are l/2(p-1) '
inverse-pairs rather than '/2(p-3). A case an error of mampulatlon, but not one of
conception.

Generic arguments and cognitive unity

The domain of elementary number theory lends itself remarkably well to generic
argument, presented with the intention of conveying the force and the structure of a
conventional generalised argument through the medium of a particular case. One reason
for this might be that, in the choice of examples, one seems to be spoiled for choice: there
are an awful lot of integers (or primes, or whatever subset is called for) compared, say,
with groups, or topological spaces. This is not to say that the choice of a generic example
is an arbitrary one: it can be (and in a sense, it ought to be) a conscious pedagogical act.
Some examples work better than others do for particular purposes - they carry and convey
the generalisation rather better because the salient operations on the variable(s) can easily
" be tracked through the argument. Some tentative principles for the selection of generic
arguments and the construction of generic arguments in number theory are given in
Rowland (2002). I conclude, however, with some cautionary remarks. '

* * First, the proof of Wilson’s theorem given above crucially depends on knowing and being
certain that 1 and p-1 are the only self-inverse elements under multiplication mod p. How
shall we establish that result? It emerges readily (as a conjecture, of course) from
examples, especially when the contmst is made with non-prime moduli, The usual proof
runs as follows: if 1 < @ < p-1, and a* = 1 mod p, then p|(a-1)(a+1) and sop | (a-1) or
p|(a+l). Whence a=1 or a=p-1. The essence of this argument is the solution of a

! M, denotes the group {1, 2, 3, ..., p-1} under multiplication mod p.
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quadratic equation in a multiplicative modular group, which seems to rule out a generic
presentation entirely free of algebraic symbolism. It is true that I could take p to be 13, and

argue that a must be 1 or 12, but.1 can’t seem to side-step arguing from (and with)
13[(a-1)a+]). Perhaps someone will delight me by convincing me that I'm wrong on this
point.

Secondly, the converse of Wilson’s theorem [if » is composite then (n-1)! # n-1 mod n)
appears to lend itself wonderfully well to generic exposition. Take the case »=10. Now
91=362880, so 9!=0 mod 10. Yes, but why? Because 9! includes factors 2 and 5. Since 10
is composite it can be decomposed into the product of two factors, both strictly between 1
and 10, so both occur as terms in 9! It is thus apparent that if # is composite then:
(n-1)!=0mod n -

However, whilst this conclusion is certainly true, the argument does not, in fact, transfer to
all composite numbers. In those special cases when » is the square of a prime p, the only
possible decomposition of » into the product of two factors, both strictly between 1 and
p-1,is n = p X p. The factors are not distinct and it is not the case that both occur as terms
in (n-1)! It is not difficult to.make a separate argument for these cases, but they can easily
be overlooked, and caught in the shadow, as it were, of the earlier generic argument.

Notwithstanding these cautionary words, there seems to be a good prospect of developing
and offering a systematic didactic technology of formal proof in number theory, building
on skilfully-constructed generic examples. There is evidence that such an approach to
proof is supportive of the cognitive unity of theorems, that is to say “the continuity ...
between the process of statement production and the process of its proof, as well as
providing meaningful examples”. (Mariotti, Bartolini- Bussi, Boero, Ferri. and Garuti,

1997). '
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